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Abstract:-’Weak and strong invariance principles are

established for strictly stationary sequences satisfying a mixing
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assumption which has two Yparts", one based on the strong mixing

condition with a polynomial mixing rate and the other based on the

}he : : r A ) ,
p-mixing condition. A2274rf1#4-- N Irm L7'ﬂf{£»/ hoines f%érf s
A

w

I. INTRODUCTION

Suppose (Xk , ke Z} is a strictly stationary sequence of
{real valued) random variables on a probability space (2,¥,P)
For - £ J £ L S «» define ?3 i= o(Xk , J £ k< L)Y . For each
n2 1 define

a(n) := sup|P(A N B) - P(A)P(B)| , Ae s’ , Be o
o= c £ fee (¢° e 2 (v7) ;
p(n) := sup|Corr(f,g)| , F o) v g (7,
. 0 ©
f(n) := sup|P(B|A) - P(B)| , A€ ¥__, Bse ¥ P(A) > O

The sequence is said to be "strongly mixing" if «(n) - 0 as
n -+, "o-mixing" if p(n) - 0 as n -+ « , and "P-mixing" if
Y(n) - 0O as n+ « ., It is well known that p-mixing implies strong
mixing and (see Ibragimov and Linnik (18, Theorem 17.2.3]) ¥Y-mixing
implies p-mixing.

Mixing types of dependence lead to many useful limit theorems
with broad applicability in statistical mechanics (see e.g. Denker

and Philipp [12]) or statistics in general. In order to establish
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the central limit theorem for strongly mixing sequences, the most

-, 5

instrumental way is to find a good estimate for the rate of

‘
X 7

convergence of a(n) to zero. 1In some situations it is difficult

WYY w
Uit R R}
D M )

to compute this rate, and one has to look for an alternative
approach such as verifying the p-mixing or even v-mixing condition
{perhaps without concern for mixing rate). When this approach also
fails, there is another possibility: to show that there exists a
sequence {Dn} of "large nice events", with P(Dn) -1 as n+ o ,
such that for large n the sequence (Xk} restricted to Dn has a
small value for p(n) or ¥vin) , converging to zero as n - «®

One might refer to such a condition as a "restricted p-mixing” or
"restricted PY-mixing"” condition. This is a little vague, but as a
specific example the well known "absolute regularity" (weak
Bernoulli) condition can be formulated as a "restricted Y-mixing"
condition; see Shields [24, p. 89]. This condition was studied in
many papers on limit theory for dependent random variables; see e.g.
Volkonskii and Rozanov [25], Gastwirth and Rubin [14], Yoshihara
[26], Berbee (1], and Dehling and Philipp [11].

The purpose of this paper is to study limit theory under

i J

) L
R

! I

"restricted p-mixing" conditions. Now the p-mixing condition itself
can be formulated in terms of pairs of events, as follows (see [6],

[7, Theorem 1.1(ii)], or [8]):

L
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.= {sup |P(ANB)-P(A)P(B)| , yﬁw , B e 9§ . P(RA)P(B) > 0O

(P(A)P(B)]

+ 0 as n 4+ »

One can formulate variocus "restricted p-mixing" conditions,
depending on whether one uses pairs of events or pairs of
zz—functions, on whether (for each n ) one "conditions" on the
"large nice event" Dn or uses some other way of analyzing the
sequence (Xk} restricted to Dn , and also on whether extra

assumptions are imposed on Dn (e.g. D_ e so ) . Among these

n ~-Q0
conditions, the following seems to be one of the least restrictive:
There exist sequences {an) and (An) of nonnegative real numbers,

with an -+ 0 and An + 0 as n -+ o , such that

vn 2 1 , BDn € ¥ such that (i) P(Dn) 2 1 - a,

0 ©
and (ii) vA € ¥_, + YB € vn . (1.1)

_ , 1/2
|P(ANBND_) - P(AND )P(BND )| S A_ - (P(AND_)P(BAD_))

A careful but simple calculation will show that (1.1) implies
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0 ©
vn2 1, YA € 7_Q , YB € ,n .

IP(A N B) - P(A)P(B)| < a_ + An[P(A)P(B)]l/z (1.2)

n
for the same sequences {an) and (An) . Indeed, (1.2) seems to be
implied by, as well as being similar to but also simpler than, any
reasonable version of a "restricted p-mixing" condition as described
above. Accordingly, our purpose will be well served by simply
studying limit theory under condition (1.2); this is the condition
that will be used in all of our results.

The conditions (1.1) and (1.2) (with a, - 0 and Ag = 0 ) can
be described as "two-part" mixing conditions, and each implies
strong mixing with rate a(n) < an + An . It is well known that
strong mixing does not imply absolute regularity. We conjecture
that condition (1.1) (that is, the assumption that there exists

an - 0 and An -+ 0 such that (1.1) holds) likewise describes a

proper subclass of the strongly mixing stationary sequences.

On the other hand strong mixing implies (1.2) (with a a(n)

n

and An 0 ). The difference between (1.2) and the usual

formulation of the strong mixing condition is in terms of mixing

rates. Our weak invariance principle (Theorem 1 below) assumes a

certain polynomial rate for the convergence of a, to O , while

An can tend to 0 arbitrarily slowly. No assumption is made there
on the rate of convergence of a(n) to 0; this rate may be
essentially as slow as that of An . This will be shown in Theorem

3 below. That theorem and the comments following it indicate that
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our Theorems 1 and 2 extend the class of strongly mixing stationary
sequences that are known to satisfy weak% or strong invariance
principles.

The idea of looking at conditions (1.1) and (1.2), and
“restricted p—mixfng" conditions in general, arcse from discussions
with E. Presutti concerning the asymptotic behavior of a particle
interacting with a semiinfinite ideal gas in a Bernoulli flow. (See
Boldrighini, De Massi, Nogueira, and Presutti [3].)

For a given strictly stationary sequence (Xk} of random

variables, we shall define for each n 2 0 the partial sum

S = X . +...+X
n 1
where S0 = 0 . If EXO = 0 and EXS < ® then for each n 2 1
the (non-negative) number o will be defined by
2 _ 2
cn—ES
For each n =1,2,3,..., provided °h > 0 , define the process

{Wn(t) , 0O t £ 1} to be the random continuous polygonal line on

[{0,1]) with vertices at the points t =0, 1/n , 2/n,...,1 where

D |
Wn(k/n) = on Sk

Our first theorem will be a weak invariance principle under

finite (2+3)-th moments (8 > 0) and egn. (1.2) with a certain




polynomial rate of decay for (an} and an arbitrarily slow rate of

decay for {An) . The main point here is that for a given & there
exists a polynomial rate on {an} which is sufficiently fast. Our

rate depends on our technique of proof; perhaps it can be improved.

Our rate can be expressed as follows: First, for each & € (0,1] ,

define the function 65: (0,5/(8+428)) - (0,} by

120
log, S (Z¥872)(172-%)_,
G.(x) := | (1.3)
5 X - 8%/[2(2+8)°)

It is easy to see that for each & € (0,1] , G5 is positive and
continuous on (0, &/(8 + 25)) and Gg(x) - as x , taking
values within this interval, approaches either endpoint. For each
§ € (0,1] define the number

g(d) := min (x) . (1.4)

0<x<5/(8+25)G6
The polynomial rate of decay imposed on {an) will be as follows:

3¢ > g(8) such that a, << n—9 as n a+ o (1.5)

In this paper the symbol << means Of{-)

We shall also impose a condition on the variances of the

partial sums, namely

e
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°
Ye > O ’ lim Supn_.w _I-‘T > 0 . (1.6)
n

With a different proof, perhaps it would be possible to replace

(1.6) by simply oﬁ + ® as n o ®

Theorem 1: Suppose {Xk} is a strictly stationary sequence of
random variables with Exo = 0 . Suppose that 0 < 5§ < 1 ,
E|X0|2+5 <o , and (1.6) holds. Suppose also that {Xk) satisfies
condition (1.2) with {an) satisfying (1.5) and An + 0 . Then as

n - » the process (wn(t), 0 £ t < 1} converges weakly to a

standard Wiener process (W(t), 0 < t < 1)

Theorem 1 still holds if for each n the process wn is

replaced by the corresponding "step process”

-1
{on s[nt]' 0< t< 1) , where [x] denotes the greatest

integer £ X . One can see this as a corollary of Theorem 1 itself,
by an easy argument using Theorem 4.1 on p. 25 of Billingsley [2]

(and one step in the proof of Theorem 1).

Theorem 2: Suppose that the hypothesis of Theroem 1 holds,

along with the extra assumption that 3A > 1 + 6/5 such that

-A
An << (log n) as n +» » ., Then there exists 02 , 0 < 02 < ®

’

such that 1lim n o = 02

Ao n ; and without changing its distribution

the process (Sn , N € N} can be redefined on another probability

e e AR e T T TN T -J.‘sL.. N x_._‘._‘.;.m._. R R P W, 2 AJJ




space, together with a standard Wiener process (W(t) , t 2 0} ,

such that as n -+ « ,

Is, - W(azn)l = o(nl/z(log log n)_l/2

) a.s.

From this almost sure invariance principle one has the law of
the iterated logarithm and some other results as corollaries; see
Chapter 1 of Philipp and Stou* [23].

Our final result will describe a class of examples.

Theorem 3: Suppose {an) and {An} are each a non-increasing
sequence of positive numbers such that a, < An for all n , and as

n-+ o , An ~ 0 and an << a2n . Then there exists a strictly

stationary sequence (X of random variables such that the

k}
following four statements hold:
{i) For all n sufficiently large, one has that
vae 2% , vB e ¢,
—® n
[P(A N B) - B(A)P(B)| < a_ + A _[P(A)P(B)]'/?
(ii) A << a(n) << A as n «+ «
n n
(iii) p(n) =1 for all n 2 1
(iv) 1If {a;} and (A;) are sequences of positive numbers

such that either

a a* £ A* vn 2 nd A* = A o
(a) n n l1 a g of n) as n - , or
0

(b) a; = o(an) and A; - as n -+ o ,

then for all n sufficiently large there exist

0

A € ¥ and B € v: such that

deiiteidindetndetehtitedng el il i P W WP R VR R RN Y TR L R VA T




R AP Pl S s I g SR —" LA S et ot ra s e r TR Y

L AW
©0

-

IP(A N B) - P(A)P(B)| > a* + A;[P(A)P(B)]1/2

- Several comments will be made in connection with Theorem 3.
j The restriction a, << a,, in Theorem 3 is of course
. consistent with the polynomial rate of decay of {an} used in

Theorems 1 and 2.
The restriction a, < An vn is guite reasonable. Consider for
a moment the case where an 2> An vn . Then it is obvious that

strong mixing with rate a(n) < a, Yn implies (1.2) and that (1.2)

would imply strong mixing with rate a(n) < 2an ¥n . Thus there
g would be practically no difference between (1.2) and the assumption
of strong mixing with rate a(n) << a, a noas > . Thus, leaving

aside the cases where the sequences {an} and {An} are
"imcomparable" with each other, the only interesting cases are those
in which an < An ¥n or rather even a, = o(An) as n -+ «

.
E; If {Xk) is a strictly stationary sequence, {an) and (An)

) are sequences of positive numbers converging to 0 , and (1.2) holds,
then one might have hoped that (1.2) would still hold if one
judiciously changes the "balance" between the two sequences {an)

and (An) , replacing either one by an appropriate '"smaller"

requence and the other by a "larger" sequence (still converging to

! 0). But Theorem 3(iv) shows that in general this cannot be done

? effectively either way, at least if one sticks to the requirement

E a s A {see the preceding paragraph). - .;
: In the standard earlier weak invariance principles under the 1
f;‘ mixing conditions discussed here, either strong mixing is assumed ’ ﬂ
:
3 )
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with a polynomial mixing rate (depending on the moments assumed), as
in Davydov [9], Oodaira and Yoshihara [(20)], and Herrndorf [15], or
p-mixing is assumed, sometimes with a logarithmic mixing rate, as in
Ibragimov [17], Peligrad {21)], and Herrndorf [(16], or else strong
mixing is assumed together with a small positive limit for p(n) ,
as in Peligrad [22]. Theorem 3 shows that Theorem 1 is not
contained in any of these earlier results. Theorem 1 contains
Ibragimov's classic weak invariance principle for p-mixing sequences
with finite (2 + 8)-th moments [17, Theorem 3.1], but it does not

contain the corresponding classic result for strongly mixing
S5(2+8)

sequences. This last result uses the mixing rate 2 a(n) < @

(see {20]), while Theorem 1 uses a faster rate on {an) . It would
be interesting if Theroem 1 could be improved in such a way as to
also contain this classic result under strong mixing.

Theorem 1 will be proved in Section 2. Theorem 2 will be

proved at the very end of Section 2. Theorem 3 will be proved in

Section 3.

.................................
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II. PROOF OF THEOREMS 1 AND 2.

The first three lemmas will be devoted to converting (1.2),
which is a condition on events, into related conditions on random

variables having certain meoments.

Lemma 1: Suppose 4 and ® are o-fields, a > 0 , A > 0 ,

and
VA€ A , YBe® , |P(AN B) - P(A)P(B)| < a + 1\-[1‘»‘(1\)!’(8)]1/2

Then !%11?4

YA € A , Be n ,

IP(A N B) - P(A)P(B)| S a + 2r-[P(A)-P(a%).p(B) -P(B%)]1/?

i

roof: Suppose A € 4 and B € 3 . Define the events A

1

and B1 as follows:

(A if P(A) s 1/2
15C

B .= [B if P(B) s 1/2

A, := :
if P(A) > 172 1B if P(B) > 1/2

1

Then by simple calculations,

. ."." . ..
. ven e .
L e

IB(A n B) - P(A)P(B)| = |P(A; N By) - P(A|)P(B,)|

......................
..................
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.........................

(P(A))P(B))1/2
' c c,,1/2
< a+ 2 - [P(Al) . P(Al) . P(Bl) : P(Bl)]

a+ 2r - [P(A) - P(AS) - p(B) - P(B%)}1/?

1]

Lemma 2: Suppose the hypothesis of Lemma 1 holds and
f e 2“(4) , g€z (3), and Ef = Eq = 0 . Then
1/31
|Efg) < 4allfj Hall, + 13 - (2A) e gl ,
Proof: Our argument will be similar to the proof of Theorem 1
of Bradley [6]; we shall indicate the differences. The first change
is that the value of t in [6) is replaced by t =22 . Now t > O

=31 then 13¢1/31 > 3

{since A > 0 by assumption). If t 2 13
and Lemma 2 follows from Cauchy's inequality. Henceforth we assume
(as in [6]),

0 <t < 13731, (2.1)

As in [6) we can assume without loss of generality that f and g
are mean-zero non-~trivial simple functions and (replacing f by -f
if necessary) that Efg 2 0 . Our task is to prove (instead of eqgn.

{2) of [6]) that

1731

Efg < 4allflllgll, + 13t

LEN g, - (2.2)

T S S S IR P PN P S

b

) -
-




We represent f and g exactly as in [6], and in particular
egqn. (3) on page 169 there remains valid. Continuing to use the
notations in that reference, on page 169, lines 16-17 there, instead

of EV.W, < H(ci'dj) we have Eviwj < a + H(ci'dj) , and instead of

i3
<I-1 <J-1
Efg < 2i=1 23=1 qier(ci'dj) we have
=Il-1 <J-1
Efg < 2i=1 23=1 qirj[a + H(Ci'dj)]

I-1 J-1
Now 5.7 q; = f; - £, < 2|fll, and 2j=1 r;=g; -9, < 2lgl, . and

hence

J -

Efg < 4allfll g, + J31) JI1] a;r Hicy.d))

I-1
i=1

All that remains now is to prove that

<I-1 <J-1 1731

HfH2HQH2 . To do this, we simply
use the argument in [6, page 169, line -8 to page 170, line 11}
(omit the 2 Efg in page 170, line 3 there), ending with an

application of Lemma 0 there. This completes the proocf of Lemma 2

here.

Remark: With a bit of extra work, one might be able to replace

the term 13 - (2)\)1/31 in Lemma 2 by C{(e) Al-e or even by

Cr(l - log A} , by adapting arguments in Bulinskii [8] or Bradley
and Bryc (7, Theorem 4.1(vi)], or by efficiently using a classic

equality of W. Hoeffding,

1
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@D -]
EXY - EXEY = f f [P(X < x, YSy) - P(XS x)P(Y € y)]ldx dy
- -

(For this equality see Lehmann [19, p. 1139, Lemma 2]. The argument

in Bradley {6] is related to Hoeffding's equality and to arguments

in Lehmann's paper.) Lemma 2 in its present form is adeguate for

our purposes.

Lemma 2 is a variant of a well known inequality in Ibragimov

)
and Linnik [18, Theorem 17.2.1] involving the strong mixing -
coefficients a(n) . The next lemma will be a similar variant of a 'f
result of Davydov [10, Lemma 7]. if

Lemma 3: Suppose the hypothesis of Lemma 1 holds and
1<ps°°,1<q5°°,1/p+1/q<1,fezmax{p'2f(4),and v
qg € zmax{q,Z)(w) . Then ’

Y luennan, - L

- ! yy—
|Efg - EtEg| < 20a VPV ey gy o+ 13 - (20)
Proof: We shall adapt Deo's [13, Lemma 1) proof of the cited
result of Davydov [(10]. Let p , g, f , and g be arbitrary but ;:'
fixed, satisfying the specifications in the statement of Lemma 3.

Without loss of generality we assume that Uf”p > 0 and uguq >0

Define the positive numbers C := neny - a 1P ang y
.= . -1/q s ' -

D : UQ”q a Define the r.v.'s fo , fl » 9 - and 9, by

fo =f . I(|f] = C) , f1 = f - fo ¢ 9 = 9 - I{lg|l < D) , and

g1 1= g - go , where I denotes the indicator function. Then

............................... . . - et -0 . el - Wt et e . .
..... PRI A W W PN . - PRI P I IS .ot te . N A :
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A - -
v |Efg EfEg| < [Efogo EfoEgol
- (2.3)
:: + ,Efogl b EfOEgll + 'Eflg - Eflgg’
;
S Now by Lemma 2,
2
:.“
- IEf g, - Ef Eq | < 4al|f -Ef [l _llg,~Eg,,ll
0% 0" 0 EfollallggEgqll,,
% 1731, , _ _
Zﬁ + 13 - (2A) NEy-Efol 5l gg-Egyll,
» (2.4)
S s 18acd + 13 - (202 hg i Nag,
X 1-1/p-1 1/31
. < 16’ VP Sgy i+ 13 - 20 e
5

To estimate the second term in the R.H.S. of egn. (2.3), we

have

IEfga) - EfgEg) | S 2 - NEgl gyl € 2 - ISl eyl (2.5)

I I

o, .

by an application of Holder's inequality, where p' is defined by

/p + 1/p' =1 . (Hence p' < g .) Now

(L R
L P !
-

t 1
IgiP ap < pP 9 1g1 9 ap
{lgl>D) {lgl>D}

1
ElgyI®

IA

p'-q d
b
ngq
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- t )
and hence gl pl-a/p ngug/p . Hence by egn. (2.5) and simple

arithmetic,
- . pnl-a/p’ q/p'
IEfogl EfoEgll < 2Hpr D Hgﬂq
1-1/p-1/q
= . 2.6
2a Hfﬂpﬂguq ( )

By a similar argument, the third term on the R.H.S. of (2.3)

can be estimated by
1-1/p-1
|E)g - Ef Eg) s 221 VP g (2.7)

By plugging egqns. (2.4), (2.6) and (2.7) into (2.3), we obtain
Lemma 3.

Now we turn our attention to the proof of Theorem 1. The main
task in this proof is to show that under the hypothesis of Theorem
1, supnzlusn"2+6/2/°n < » ., The next six lemmas are devoted to
proving this inequality, and the argument will be an adaptation of a
well known argument of Ibragimov [17, Lemma 2.1). Once that
inequality is proved, Theorem 1 (and also Theorem 2) will follow
fairly quickly.

In order to simplify our use of Lemma 3, let us introduce the

notation

1731 (2.8)

vn2 1, b :=13 - (2r_)
n

........ AR AR i i ¢ Jilva i s, S St S s St e 4

-
Lot L
'."-'(.".' Lot e ,
WSINEY WRNRINNIY VRSN

[ R
1 L PR
' ,‘ 0t .‘ P 3

-
L ".,“ PR
. S e
B I




. ey -
YD AR D S 4

L,
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where {An) is as in the hypothesis of Theorem 1. Note that under
the hypothesis of Theorem 1, bn + 0 as n - o . In what follows,

under the hypothesis of Theorem 1, we assume without loss of

generality that

(2.9)

A
b

vn21, a_ <1 and b

Lemma 4: Suppose the hypothesis of Theorem 1 is satisfied.

Then for each 7 > 0 there exists a positive constant C11 (a

function of only m and & ) such that vyn2 1 , vk 2 1 , v&8* , &**

such that §/2 < 8§* < §** < § ,

(2 + 120a‘5‘5"""5")/‘2+5)2

“821'1" 2485 * < "sn"2+5** k+1
&8/3 1/(2+5%*) .
+ 6bk+1 + 1] + Cnon + 2k uxou2+5

Proof: First let us suppose that n2 1, k2 1, and

5/2 S 5% < 8** £ 5§ , and let us carry out some calculations. Define

the notation §n := S2n+k - Sn+k . Then by Minkowski's ineguality,
ISl gese S WSy * Slloiss + 1S = Sullasss * 1Sonuc = Sonllp4se
(2.10)
S Sy + Spllguse + 2k - 1Xgllps

2+5*

Now let us estimate the term Elsn + §n| Recall that

....................
.......
...........

.................
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5 £ 1 by hypothesis.

LIPS CTAL Pt

+ 312" < m(s_ + §n)2(|sn|5* +15.1%%)

Elsn nl n

EZ SO DO

2+5* 5* = 2 2,5 (8*
s 2E(|S | + EIs 1715 1% + EIs_[“I5 |

(2.11)

1+5% 1+5*
+ 2E|S |- 5| + 2E|S_| 15, |

e E I T
O PAELILRS
-

245 % 5* 2 2 5* -
< 2E|Sn' + 3E'Sn| |§n| + 33|Sn| |§n| };
; where the last inequality comes from the elementary fact that if !J1
:? X2 0 and y 2 0 are real numbers then
; * *x * *
xyl+5 + x1+5 v s x6 y2 + xzya
*
. Next let us estimate Elsnla |'§n|2 . We shall apply Holder's t

inequality, and Lemma 3 (and (2.8)) with p = q = 2(2+5**)/(2+&6*) ,

and (2.9}).

E|Sn'5*|§n|2 < [E|§n|2+6*](2—6*)/(2+6*)

R ot DA

(2+5%*)/2,25*/(2+5%) L
(EIS 3, | )
- 25+ :

. 2-3 1-1/p-1 2+8*) /2 * 2+5 ¥ .
5 S WSylgee - | 20a 0y /P /s (BTN s (2Y8T) /2y 12 ,
2 248%)/2 *
. by 18 BBy s (28RN 2
v P
:5 + E|§n|(2+5 ) EIS |(2+5‘)/2
. - -
) '




— -
2-5%* S**-3%)/(2+5**) 2+45* 25%*/(2+%)
= is 023, - | 202277720 us 1225,

2+5* 2+5*

Lt PealSalale ISz 2
< s 1220 - [ 20af3yTT BTy s 2 it | zmrizen)
+ by IS 220, s 5t |
S ISyl 5rans - ~20a§i§‘5"'5*”“2*5"‘2*5"”usnu§f;u—
e el
[ .
' S s E (aoab 3TEN T bty

2-5* 25*
+ IS lorasehSols

— *
The same estimate holds for E|sn;2:sn|5 , and hence by (2.11) we
. have that
2
2
2+5* 245* S3(5**-5*)/(2+d) 5/3

E|Sn + §n| < "Sn”2+6**[2 + 120ak+1 + 6bk+1]

; 2-5* 25*
+oelis 1273 s 22" (2.12)

‘a2 v v L,

In proving Lemma 4 it suffices to consider only values of

LN Td

n € (0,1] . Henceforth we impose this restriction on m. For each




20
n € (0,1) define the constant c, by Cy 7 6(2+6)/an_2/5 . Then
% * - -5 % *
for each such 7 ., Cn 2 6(2+5 )/7(23 )n (2-8%)/(28%) and by simple
—-_% *
arithmetic, (iS/CT')l/(2 5*) < (71/6)1/(25 ) . Hence either
1/(28*)
(1) o /S, 54« S (1/6) or
(ii) o /IS > (/c_)t/(2-8%) If (i) holds then by simple
n n"245%* n
. . 2-5* 2&6*% 245* -
arithmetic, 6“Sn“2+5**°n <7 - "Sn”2+5** . If (ii) holds then by
. . 2-5* 285% 2+5%* .
simple arithmetic, G"Sn"2+5**°n < Cnon . In either case, by
(2.12), for each n € (0,1] ,
2
2+5* 248 * S(O*%*-5%)/(2+48) 5/3
EIS_+ 3| < ISyll,gxel2 + 120ap .7 + 6b (] + 7]
+ C_o2*d"
mn
and hence (using the trivial fact that Cﬂ > 1)
"Sn * §n"2+5*
2
S(S**~5%)/(2+8) §/3 1/(2+8*)
< l!Sn!l2+5**[2 + 120ak+1 + 6bk+l + 7] + C_qon
Since Cn depends only on 1 and & , Lemma 4 follows from (2.10).

In what follows, expressions such as 2X will frequently occur

as subscripts. For typographical convenience we shall use the - .?:ﬂ'

following notation:

- e -
PN
el
. Fete i
e e
'.‘."ix.n‘ "
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Yx € R , doub(x) := 2¥

When necessary we shall use the notation [x] := greatest

integer < x

r
Also, if r = 0 then Zi=1 (anything) is interpreted to be

0

Lemma 5: Suppose the hypothesis of Theorem 1 is satisfied.
Then 38 > 0 , 3A > 0 such that vr e {(0,1,2,...} ,

r{l/2-p)
ISqoub(ryll245/2 < 2 1 Xoll 245
r
< (i-1)(1/2-B)
A g2 %doub(r-i})’
i=1
Proof: Using (1.5) we fix 8 > g(8§) such that
| A
-9
an =o0o(n ) as n -+ « , (2.13)

Using (1.3), (1,4) we fix v , O < y < §/(8+28) , such that ’
e > Ga(v) . Then we fix € , 0 < € < ¥ , such that

log 120
2, (2+8/2)(172~v) _, : ]

€5%/[2(248)2) ' N 1

g >
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By elementary arithmetic,

~0e52/[2(2+8)2) 1 (2+45/2) (1/2-7)

2 < 120 % - (2 - 2)

and hence

—0e52/[2(2+8)2] (2+8/2) (1/2-7)

2 + 120 - 2 < 2

By (2.13), a, < n_9 for all n sufficiently large. Hence for all

positive integers r sufficiently large,

52/12r(2+8)°] —0e52/[2(2+8)2)

ardoub(re) ]+l < 2

and hence

52/12r(2+8)%)
[doub(re) ]+l

(2+8/2)(1/2-7)

2 + 120 - a < 2

Fix pnu , € < u <y . Fix 71,

0 <1 < 2(2+6/2)(1/2—u) - 2(2+6/2)(1/2—7) Since bk ~ 0 as

k - » , one has that for all integers r sufficiently large,

6b5/3 +q < 2(2+8/2)(1/2—u) _ 2(2+5/2)(l/2—y) Hence for

[doub(re) ]+1

all integers r sufficiently large,




j -

23
5%/ 12r(2+5) %] 5/3 1/(2+8/2)
(2 + 120 (doub(re)j+1 * ®Prdoub(re)j+1 ¥ M)
< 21727 (2.14)
Fix B such that
0 < B <y -¢€ . (2.15)

Let us now suppose that r is a positive integer so large that
(2.14) holds, and let us carry out some calculations. For each

i=20,1,2,...,r define 5i = 8/2 + 1 - &/(2r) . Then for each
2
)

i=1l,2,...,r, 8(5, -8, ,)/(2+8)% = 8%/ [2r(2+s)

i and hence by

Lemma 4 (with k = [2re]) and (2.14),

1/2-u re+l
vn 2z 1, NSQn”2+5i_l < ”Sn”2+6i 2 * Cnon *2 ”XO”2+6
where Cﬂ is as in the statement of Lemma 4. Applying this
repeatedly, with (n,i) being (l.,r) , then (2,r-1) , then
(4, r-2) , then (8,r-3) ,... we finally obtain
I‘(I/Z—H)
ISgoub(ryl2ss/2 = (2
NESEURPLE E SR V2 SIS U N0 DR
Li=1 ! &l 545
c . 5. (i—l)(l/2-—u)‘
* Oy 2i=1 ’doub(r-i)

A ok oAl aSR o A umi M et R SN i

Lt gig g

_——

PP W Y W T U Yl S Y
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s (2re1) - 2TO/ETWEE) g e

ve .S pli1)(1/2-n)

7 4i=1 %doub(r-i)

By (2.15), for all r sufficiently large,

< oT(1/278) 4

NSgoub(r)l2+85/2 ol 248

p(i=1)(1/2-8)

1 doub(r-1i)

i

il

By replacing Cn by a larger constant if necessary, we can include

the (finitely many) remaining values of r 2 1 . Thus Lemma 5 holds
for all r 2 1 . Also, Lemma 5 holds for r = 0 by the simple
equation “Sl"2+5/2 = “X0”2+5/2 < ||X0||2+a . This completes the
proof.

Lemma 6: Suppose the hypothesis of Theorem 1 is satisfied.

Then vy > 0 , 381 > 0 such that vi , r with 0 < i £ r , one has

B . p(T=i)(1/2-7)

that odoub(r} 2 y doub (i)

Proof: First let us suppose that n 2 1 and k 2 0 , and let
us carry out some calculations. Let §n be as in the proof of

Lemma 4. Similarly to equation (2.10) there,

.
...........

« . A N . .
SRR O e T
siuniabisdadedaded s ded o oaadad on




LB s e

hs

s, + S, - 2KIX

oll 2

v

2n"2

Applying Lemma 3 with p qgq=2+58/2 , along with (2.8), we obtain

5/(4+8) 2 2
[Cov(S,,Sp)l < 208" " WSullous/2 + PraaltSpll;
and hence fﬂa
|
2 _ 5/(4+5) 2 1/2 SR
WSy + Splly 2 [2(1-by NS G - 40ay L7 IS NG5! T
1/2,, _ .nl/2_5/(8+28) %
2 277 (1B IS, - 4077 Ay, WShll24s,2 e
(where [.]1/2 is replaced by 0 if [.] is negative) and hence l%f;
R
1/2,, _ anl/2_8/(8+25) S
"s2n"2 2 2 (1 bk+1)”Sn"2 40 Ap+l "Sn"2+6/2 o
(2.16) .
- ». 4
2Kl X,
We shall come back to (2.16) shortly. Now let 0 < g < 1/2
and A > 0 be as in Lemma 5. Let ¢¥ denote the set of all e
non-negative integers r such that
r(l/2-p) i(1/2-8) P = »
odoub(r)/z 2 odoub(i)/2 vi 0,1,...,r .
We need to show that ¥ is an infinite set. To do this, it
N r(1/2-8) _ >
suffices to show that s supreNOdoub(r)/z = o ., Now for e

..............................
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1

+ . .
< n < 2r and expressing n in

any n2 1 , defining r by 2

binary form, we have that

r r
i(1/2-8)
g s s < s ¢+ 2
n 120 doub(i) 120

r

=g - 2r(1/2—B) . z z_j(l/Z—B)
j=0

s nl1/278) o S ,-3(1/2-8)
€0

Since the last sum is finite, the assumption (1.6) (with any
€ € (0,28)) implies s = o , Hence ¢¥ 1is an infinite set.

Obviously, for each r € ¥ one has that

odoub(r) 2 °doub(i) vi =0,1,...,r and hence (see Lemma 5)

r(1/2-g)

ISgoub(r)lla+s/2 = 2 Xl o4s
r
, (1-1)(1/2-p)
* A 940ub(r) 121 2

The sum is << 27¢1/27B) o 1 L o . wWe fix B > 0 such that for

all revy , < B . 2r(1/2-B)

"Sdoub(r)"2+6/2
for all k2 0 and r such that r - 1 € ¥

doub(r) * BY (2.16),

’




%doub(r) = k+1'%doub(r-1)

_ 172, 5/(8428)  ,(r-1)(1/2-8)
407" "Bay .y 2 °doub(r-1)
—2ko1
: Referring to (1.3), (1.4), it is easy to show that
h g(d) > (8+25)/8 . Using (l1.5) in the hypothesis of Theorem 1, we L
E fix 6 > (8+25)/8 such that a, << k® as kao® . We fix Q > 0
such that for all k2 0 and r such that r - 1€ ¢ ,

1/2

2 (1

Ydoub(r) > “br+1)%oub(r-1)

_9 - -— ‘ o
- Q- (k+1) 8/(8+28) | ,(r-1)(1/2 p)odoub(r—l) Qv_hﬁ
- 2ka1 S
.&x.v ~d
Now suppose r - 1€ ¥ and 7 > 0 . Taking ‘;Q
s k = [7 odoub(r-l)] we obtain T
»
5 1/2,,
% %doub(r) = 2 1P 1)% 0ub(r-1)
- qn 98/(8+28)  (1-85/(8+28)  ,(r-1)(1/2-8) L

doub(r-1)

odoub(r-l)




Now suppose ¥y > 0 . Let us fix 7nn > 0 so small that
4

1 - 2nﬂXO"2 > 2 Then as r -+ « subject to the restriction

r-1ley¢ ,b .0 (since k= [n °doub(r—l)] -+ ®) , and

1-05/(8+25) _ _(r-1)(1/2-B)
®doub(r-1) 2 %doub(r-1)’

¥ and the fact that 035/(8+28) > 1 by choice of 6 ) . Hence

= of (by the definition of

there exists ry = ro(v) such that vr 2 r, such that r - 1 € » ,

172~y e
odoub(r) 2 2 odoub(r—l) Considering some vy , 0 < ¥y < B , one o
has from the definition of ¥ that if r 2 ro(y) and r - 1 € ¥ v
then r € ¥ . Since ¥ 1is an infinite set, such an r must exist,
and by induction one has that ¢¥ contains all but finitely many -
positive integers. .,
Now let 7y > 0O be arbitrary but fixed. By the preceding
argument there exists r* = r*(y) such that vr 2 r* , )
172~y . >
odoub(r) 2 2 odoub(r—l) Define -
. 1/2-y . S
c : inf[odoub(r)/(z odoub(r-l))] , 1< r =< r+x . .
*
Define Bv 1= e’ . Then by a simple argument, By > 0 and
. . . (r-i)(1/2-v) )
vi , r, 0 is<r, adoub(r) 2 By 2 odoub(i) Thus l- .
Lemma 6 holds. This completes the proof. B
Lemma 7: Suppose the hypothesis of Theorem 1 is satisfied.
»
Then there exists a constant B > 0 such that vr 2 0 , T
1Sqoub(ryf2+5/2 = Bdoub(r) o
 __
. 

...............................................




= 29 0. (
2, '
2
..
’
v Proof: Fix B > 0 and A > 0 as in Lemma 5. Fix v ,
4 T —
0 <y <p . Fix Bv > 0 as in Lemma 6. From Lemma 5 we have that !¢;¢4
:- for each r 2 0 ,
. "sdoub(r)"2+6/2
o 2!'(1/2-3)
s o e X, SR
doub(r) odoub(r) 0" 2+8 .'* K
sa- S [2(1-1)(1/2—a) d:ub(r-i)” o
i=1 doub(r) R
" r(1/2-g) o
3 £ %goub(r) ——— 1%yl 545 a
. doub(r) .
Ve » (
r
casllS 2Dz 2—1(1/2—1)]
Yy .4
i=1
Lo
. r(l/2-8) . ]
4 By Lemma 6 for our fixed vy , the term 2 /odoub(r) vanishes .
‘. r . _ 3 _
- as r - ® ., Also, the sum 2 2(1 1)(1/72-8) . 2 1(1/2-7) is S
- i=1 R
3 © »oo
bounded above by 2 23 (7=B) ¢ & . Lemma 7 follows.
i=1
X Lemma 8: Suppose the hypothesis of Theorem 1 holds. Then ;
there exists a constant D > 0 such that vr =0,1,2,...,
- r r+l . . 2
. vn , 20 £ n< 2 , one has o 2D %doub(r) ° hence o 4+ = as

n -» o




2r (for D =1

Proof: Obviously we can ignore the case n =

will work then). Let us suppose that r 2 0 , 2r <n < 2r+l , and
k21, and let us carry out some calculations. Define
§doub(r) = Sptk ~ Sn-doub(r)+k Arguing as in Lemma 6, we have

hSqll, 2 "sn—doub(r) * Sdoub(r)"2 - 2k - NGl (2.17)
Applyving Lemma 3 with p =2 and g =2 + §/2 , we have

'COV(Sn-doub(r)' gdoub(r)’

5/(8+28)
< ay ISh_doub(r)"2 ~ "Sdoub(r)!2+5,2

* bk ' ”sn—doub(r)HZUSdoub(r)uz

and hence » A j
E[S 3 12 -
n-doub(r) doub(r) T
» <
> gs? Es? 2b_||'S hlis ] ‘
n-doub(r) doub(r) k" "n-doub(r)" 2" doub(r)" 2 ,\‘j
BRI
5/(8+25) S
2ay WS h-doub(r)! 2 Saoub(r)l2+s 2 L
2 2 2 -
> -
2 BS/_doub(r) * ESqoub(r) ~ P R (ESp_ ~doub(r) * ESdoub(r)’ S
S
23/ (8+28) 2 e
2k (Esn -doub(r) ' ”Sdoub(r)”2+5/2) LT
v
A R R D R N S S N I oo




' L .8/(8+258), .2

. > (1 bk ak )Esn-doub(r)

v 2.5/(8+25), 5.2

i * (1= bk - B ™S )Esdoub(r)

) where B is as Lemma 7.

Fix k such that 1 - b - (max(l,Bz))ai/(8+26) > 1/2 . Then

l vyr 2 0 , ¥Yn , 2r < n <« 2r+1 , one has that

: 2, 2 _

- E[Sn~doub(r) + gdoub(r)] 2 (I/Z)Esdoub(r) ; and hence by (2.17),
{ 1/2 )

d ISy 2 (17202 2isg e i, - 2K,

. . . r r+l
By Lemma 6, if r is sufficiently large and 2" < n £ 2 then

i HSnu2 2 (1/2)"sdoub(r)”2 . Replacing 1/2 by a smaller positive
. constant if necessary, we can obtain Lemma 8. {The second

conclusion of Lemma 8 now follows from Lemma 6.)

Lemma 9: If the hypothesis of Theorem 1 is satisfied, then

@

Sup ., | "Sn“2+5/2/°n <

‘F”" L R ]
r2 S SR P S S

Proof: Let the constants B and D be as in Lemmas 7 and 8.

Fix vy > 0 . Let By be as in Lemma 6.

1l be arbitrary but fixed. Define r by

|-
o
o
+
s S
v

3 2" £ n < 2 . Expressing n in binary form, we obtain

--------
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) HSqoub (1)l 2+5/2

<2 B 9%ub(i)

-1 ~(r-i)(1/2-v)
© 2 %doub(r)

-jll/2-7)
2 ]on

Since the term in the brackets is a (finite) constant, Lemma 9 is

proved.

Proof of Theorem 1: Recall that (1.2) implies strong mixing.

By Lemma 9 and Ibragimov and Linnik [18, p. 307, Theorem 17.2.2],

1 )| converges to 0 as

I + » ., By Ibragimov and Linnik {18, p. 330, lines 6-14] and Lemma

supmzo,nzolcOrr(x_m +...4 Xo , X, +...+ X1+n

8, Var Sn =n - h(n) where h : (0,) - (0,») 1is a slowly varving
function. Hence by Lemma 9, Ibragimov and Linnik [18, p.397,
property (3)] (for 1/h as well as h ), and some simple
calculations,

2+86/2
E|W (s)-W_(t)]

1+0/5

sup
Is-t|

n21, 0<s < ts 1

.........
...................




‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Hence in Billingsley (2, p.157, Theorem 19.2) the tightness
condition (egqn. (19.15) there) is satisfied. (See Billingsley (2],
p.95, Theorem 12.3 and eqn. (12.51) and p.55, Theorem 8.2.) In [2,
Theorem 19.2] the uniform integrability condition is satisfied by
Lemma 9. Now Theorem 1 follows from Billingsley [2, Theorem 19.2]

(the rest of the conditions there are easy to check).

Proof of Theorem 2: By the hypothesis of Theorem 2, one has

that (X, ) is strongly mixing with mixing rate a(n) << (log n) ?
(where A is as in the hypothesis of Theorem 2). Now Theorem 2

follows immediately from Lemmas 8 and 9 and Bradley (5, Theorem 4].

. e o N P ‘e e e e L T Lo . s -
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III. PROQOF OF THEOREM 3

Without loss of generality we assume that An £ 1vn2 1, and

that the sequence (an) is strictly decreasing.
For each n 2 1 define the positive number

€ = (an - an+l)/(6n)

et x(M .o {xin) ,kez) ,n=0,1,2,... be strictly

stationary sequences of r.v.'s with the following properties:

0)  4(1)

(3.1) These sequences X( . x(2),...

are independent

’

of each other.

(3.2) The sequence X(o)

satisfies a(n) = An/a and
p(n) = An/z for every n 2 1 . (This is possible by Theorem 6 -

and the two lines immediately following Theorem 6 - in Bradley (4,

page 4].)

(3.3) For each n=1,2,3,... the sequences
x("'J) 1= {Xin), k= jmodn}) , j=1,2,...,n are independent of
each other.

(3.4) For each n=1,2,3,..., each j=1,2,...,n, the

sequence X(n'j) defined in (3.3) is a strictly stationary Markov

chain with state space (1,2,3,4}) , with invariant marginal

2 2 .
probability vector [(1 cn) , (l—en)en ' (l—en)en , en] , and with

one-step transition probability matrix

.....................
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-
l—en € 0 0
(o] 0 l-e €
n
i l—en €n 0 0
1 —
{_ 0 0 1 En €

{Thus the (&¢,m)-th entry of this matrix is

(n) = (n) _
P(Xipslynej = ™ ¥ppey =8 )
Note that for each n 2 1 , the distribution of the sequence
X(n) is completely determined by (3.3) and (3.4). Also note that
for each n2 1, each j =1,2,...,n , the Markov chain X(n’J) is

l-dependent (one can see this by squaring the transition probability

% ()

matrix). Hence for each n 2 1 the sequence is n-dependent;

this fact will be useful later on.

Let £ : R xR X R X,.,.o R be a bimeasurable isomorphism.
{That is, both f and f_l are Borel-measurable functions. Such
an f is well known to exist.) Define the sequence

X := (X ke€ 2} by

k’

X, = f(Xéo) , x(D ,xiz) ...) vkez . (3.5)

k k

By an elementary argument, the sequence X is strictly stationary.

For -~o £ J S L £ ® define the o-field

L .= o(X, . JSksL) = s(x!"  h> o0

The last equality here holds by the properties of f




We shall now prove that the sequence X satisfies properties
(1}, (ii), (iii), and (iv) in Theorem 3. PFor arbitrary o-fields 4

and 3 we shall use the notations

l a(A,®) := sup|P(ANB)-P(A)P(B)| , Ae 4 , Be 3 ;
p(4,®) := sup|Corr(f,g)| , f e £,(4) , g€ £,(%»)
Proof of Theorem 3(i): For each N = 1,2,3,... define the
! event DN by
} Dy := {(X{™=1 v(n,k) such that n2 N and -n+ 15 k< 0)
| _ (n) _ 4, _ 2
Now for each n = 1,2,3,..., P(X0 =1) = (1 - en) 2 1 - 2en
Hence for each n =1,2,3,..., P(X(n) =,..= X(n) = 1) 2 1 - 2ne
-n+1 o} n
Hence for each N =1,2,3,...,
: < o
P(D,) 2 1 - 2ne_ 2 1 - 2 {a_ - a )/ 6
| N nsN P nZN nooonl
i
=1 - aN/3 2 1/2 . (3.6)
. (Recall that ay < a, < Al <1 .) By an elementary argument, for
' each N = 1,2,3,... the probability measure QN on vtw defined by

QN(A) 1= P(A[DN) has the following properties: Under QN the

; sequences X(O) X(l) x(z’

’ ’

,+.. are independent of each other, ' é, 'iﬁ
1

.................................
.........
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x(0)  xUh o x (VD)

and the sequences have the same

’

distributions as they have under the given probability measure P

X(l) X(z),...,X(N_l) are each at

’

Thus under QN the sequences
most (N-1)-dependent. Also, under QN , for each n 2 N the

sequence X(n) has probability distribution given by

. (n) _ _ o(n) _ . .
P( |X_n+l =,.,.= Xo = 1) and in particular (under QN , ¥n 2 N)
o(XLn) .k £ 0) and o(xén) ., k2 1) are independent o-fields.
Thus under QN the o-fields o(x(o)) , o(Xén) , n21, k< 0) ,
and o(Xén) ., n21, k2 N} are independent. Consequently, using

(3.2), YN 2 1 ,

0 - (0) (0)
Po ("o W) T Pq e ks o e k)
= pp(o(XLO) . k< 0) ., o(Xéo), k2 N)) = A/2

The first equality here follows from the well known fact that if

Al , ml , A2 , and %2 are o-fields on some probability space and

\Y i -
ANV B, A, and B, are independent, then p(Al\/A2 C BV B,)
p(Al ' 21) . This fact is a simple consequence of the identity
p{(A,B8) = sup||lE(f(B) - Ef”2/uf"2 , £ e zz(A) . Thus ¥N 2 1 one has
that
va e 50 | vB e 5%, |Qu(ANB)-Qu(A)Qu(B)| € (A./2)[Qy(A)Qy(B)]/?

—e N © '*N N N R | N N
{(3.7)

................................

.................
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5

-
-

AN,

By (3.6) and an elmentary argument, VYN 2 1 , VA € vfm , one

T
224V

has that

NANN SN

IQy(A) - P(A)| = [P(A[Dy) ~ P(A)| S 1 - P(Dy) < ay/3

Hence by (3.7) and (3.6), one has that VvN = 1,2,3,..., VA € v?@ ,

<0
vB € ’N R

{P(A N B) - P(A)P(B)| <

< [P(AN B) - Qu(A N B)| + [Qu(A N B) - Qu(A)Qy(B)]

+

1Qu(A)[Qy(B) - P(B)]| + |P(B)[Qu(A) - P(A)]]

< ay + |Qu(A N B) - Qu(A)Qy(B)]

A
[}
+

1/2
N+ (Ayg/2)[Qy(A)Qy(B)]

172
P(A) . P(B)
S ay + (Ay/2) [mn PTD'_TN}

1A
o
+

Ay(B(2)P(B) ]2

This completes the proof of Theorem 3(i).

Proof of Theorem 3(ii): For each n 2 1 ,




(0)

0 ks o), o(x£°) , k2 n))

An/e = a(o(X

0 ®
a(¥ < + < A
Sa(¥ , ,f)Sa +Ar S22

by (3.2), Theorem 3(i), and the assumption a, < An . Thus (ii)

holds.

Proof of Theorem 3(4iii): For each n2 1 ,

Corr(I(Xén) =2 or 4) . I(Xén) =3 or 4)) =1

by an elementary calculation, and hence p(v(_)°° ' v:) =1

Proof of Theorem 3(iv): Recall the elementary fact that if

(1.2) holds then a(n) s a, + A n=1,2,.... By essentially the

n '
same elementary argument, if hypothesis (a) in (iv) holds then the
conclusion of (iv) follows quickly from Theorem 3(ii). Now let us
assume that hypothesis (b) in (iv) holds, namely a; = o(an) and
A; + 0 ; we shall show that under these assumptions too the

conclusion of (iv) holds.

For each n 2 2 define the events An and Bn by

An 1= (xﬁ“) = 2 or 4 for some integer k , -n/2 < k £ 0} ,

Bn = {Xén) = 3 or 4 for some integer k , n/2 < k £ n) . By an
elementary calculation, vn 2 1 , P(An) = P(Bn) and P(BnlAn) =1 ;
and also P(An) ~ nsn/2 as n -+ » . (Here and in what follows, the

notation cn ~ dn means Lim cn/dn = 1.)

' ‘
.2
D{ -
L J

R
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For each N = 1,2,3,... define the events Ai and Bﬁ by

N ‘T PN N+1 N+2

uB U

N N N+1 N+2 e '

By an elementary calculation, VN2 1 , P(Aﬁ) = P(Bf) and o
3 '
P(BylAy) =1 ; and also, as N+ = , P(A§) ~ §n=N ne /2 = ay/12 .f{:.
Hence, for each n =1,2,3,... A;n € f?@ and Bsn € y: . and ié!
as n - » , 15;:;
b

* - x
|P(A2n N B P(A;n)P(B2

n = P(AZ )[(1 - P(A} )]

Y

/2

= 1
~ P(A;n) = [P(A;n)P(BEn)] a2n/12

Since a, << a by the hypothesis of Theorem 3, it is now easy to

2n
see that if hypothesis (b) in Theorem 3(iv) holds, then the
conclusion of (iv) also holds. This completes the proof of (iv). "?
]
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